RebuildTree

题目描述[原题链接][https://www.acwing.com/problem/content/23/]

输入一棵二叉树前序遍历和中序遍历的结果,请重建该二叉树。

注意:

  • 二叉树中每个节点的值都互不相同;
  • 输入的前序遍历和中序遍历一定合法;

样例

1
2
3
4
5
6
7
8
9
10
11
给定:
前序遍历是:[3, 9, 20, 15, 7]
中序遍历是:[9, 3, 15, 20, 7]

返回:[3, 9, 20, null, null, 15, 7, null, null, null, null]
返回的二叉树如下所示:
3
/ \
9 20
/ \
15 7

算法描述

通过先序遍历,找到每棵子树的根节点,在中序中找到其左右子树,递归建树,直到遍历完遍历序列;

C++代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
unordered_map<int,int> pos;

TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int n = preorder.size();
for(int i=0;i<n;i++){
pos[inorder[i]] = i;

}
return dfs(preorder,inorder,0,n-1,0,n-1);
}

TreeNode* dfs(vector<int>&pre,vector<int>&in,int pl,int pr,int il,int ir){
if(pl>pr)return NULL;
int k = pos[pre[pl]]-il;
TreeNode* root = new TreeNode(pre[pl]);
root->left = dfs(pre,in,pl+1,pl+k,il,il+k-1);
root->right = dfs(pre,in,pl+k+1,pr,il+k+1,ir);
return root;
}
};

Java代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
* Definition for a binary tree node.
* class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
HashMap<Integer,Integer> hm = new HashMap<>();
int[] pre;
int[] in;
public TreeNode buildTree(int[] preorder, int[] inorder) {
pre = new int[preorder.length];
in = new int[inorder.length];
System.arraycopy(preorder,0,pre,0,preorder.length);
System.arraycopy(inorder,0,in,0,inorder.length);
for(int i = 0; i<inorder.length;i++)hm.put(inorder[i],i);
return dfs(0,pre.length-1,0,in.length-1);
}

public TreeNode dfs(int pl,int pr,int il,int ir){
if(pl>pr)return null;
TreeNode root = new TreeNode(pre[pl]);
int k = hm.get(root.val);
TreeNode left = dfs(pl+1,pl+k-il,il,k-1);
TreeNode right = dfs(pl+k-il+1,pr,k+1,ir);
root.left = left;
root.right = right;
return root;
}
}